EGC442 Class Notes 2/3/2023

Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu

```
/* This is a Verilog description for an 8 x 8
register file */
module regfile8x8
  (input write,
   input [2:0] wrAddr,
   input [7:0] wrData,
   input [2:0] rdAddrA,
   output reg [7:0] rdDataA,
   input [2:0] rdAddrB,
   output reg [7:0] rdDataB);
    reg [7:0] register [0:7];
    always Q(*) begin
      case (rdAddrA)
    0: rdDataA = register[0];
    1: rdDataA = register[1];
    2: rdDataA = register[2];
     3: rdDataA = register[3];
     5: rdDataA = register[5];
     6: rdDataA = register[6];
     7: rdDataA = register[7];
    default: rdDataA = 8'hXX;
      endcase
   end
always @(*) begin
      case (rdAddrB)
     0: rdDataA = register[0];
```

```
1: rdDataA = register[1];
    2: rdDataA = register[2];
    3: rdDataA = register[3];
    5: rdDataA = register[5];
    6: rdDataA = register[6];
    7: rdDataA = register[7];
    default: rdDataA = 8'hXX;
      endcase
   end
   always @(posedge write) begin
     case (wrAddr)
      0: register[0] <= wrData;
      1: register[1] <= wrData;
      2: register[2] <= wrData;</pre>
      3: register[3] <= wrData;
      4: register[4] <= wrData;
      5: register[5] <= wrData;</pre>
      6: register[6] <= wrData;
      7: register[7] <= wrData;</pre>
    endcase // case (wrAddr)
   end // always @ (posedge write)
endmodule
```

Instruction Count and CPI

 $Clock Cycles = Instruction Count \times Cycles per Instruction$ $CPU Time = Instruction Count \times CPI \times Clock Cycle Time$ $= \frac{Instruction Count \times CPI}{Clock Rate}$

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

5. Suppose we have two implementations of the same instruction set architecture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. a. How does one know that each computer executes the same number of instructions for the program? 5 All computers use the same number of instructions for a given program. Both computers use the same instruction set architecture. Both computers use the same implementation. b. Which computer has a faster clock? TEXO = # of inst Computer A Computer B c. Which computer requires fewer clock cycles to execute a single instruction? Jomputer A > NX-2 CLOCK Cycles $Computer B \rightarrow NX + 2$ If Computer A executes 1000 instructions for the program, what is the program's CPU time on Computer A? 1000 instr * 2.0 cycle/instr * 250 ps/cycle = 500,000 ps. \longrightarrow 1000 cycle/instr * 250 ps/cycle = 500,000 ps. 1000 instr * 1.2 cycle/instr * 500 ps/cycle = 600,000 ps. Texee B

G										
	CPI for each instruction class					Code sequence	Instruction counts for each instruction class			
		А	В	С		code sequence	А	В	С	ϵ
	СРІ	1	2	3		1	2	1	2	5
						2	4	1	1	$\left(\right)$
CLK Covel-a.	Zylit	- X 2	requires	2 X 3 the largest	number of	f cycles per ins	file = (<i></i> +x +()	(2 + 1	X]
b. Code sequence 2 executes instructions. $6 = 1.5$ = 1.5										
c. d. in:	Code seque Assume a r struction clas	ence 2 requ new code s s. What is	uires equence (code sequ	CPU clos 3 contains t uence 3's Cl	ck cycles. he follow PU clock	ing instruction cycles?	counts for e	alel_	27	5 (n: 6 (n
	Code sequer	Instruction	on counts f	For each instru B A XZ 6	$\frac{C}{\chi 3}$	CPI	$\frac{36}{26}$	+4-+6-	= 20 8	

8. For a given number of instructions, assume CPI is increased by 20%, and clock cycle time is decreased by 10%. The program execution time decreases.

Texec = # of inst * CPI * Tryc 120/ 101/ Tener new = #abinstx-CPI x12 x Tengex 0.9 = 1.08 # Brust x CPI *Tryc slower system INVEASES

4. Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock. We are trying to help a computer designer build a computer, B, which will run this program in 6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to requi **1.2 times as many clock cycles as computer A for this program.** a. What is the CPU clock cycles for computer $A?D \leq$ SANC b. Computer B's performance is improved by reducing the loveB = Instr * CPI*TB/ × CPI, *· APREA = 10 Sec = Instra Toxec B = G sec = instr x 1.2 CPA primance of B = Execution of A = rformance of A = Execution of B 10

7. Assume CPI and clock cycle time remain constant. Reducing the instruction count will reduce the program's execution time.

#of Instr × CPI × clock Period terer Yes 2 A clock rate of 1 GHz corresponds to a period of 1 nanosecond, which is 1x189 seconds. > 1 X 109 $\frac{1}{|X|_{0}^{q}} = |X|_{0}^{-7}$